9 INTEGERS 11 A ( 2011 ) Proceedings of Integers Conference 2009

نویسندگان

  • Kevin Ford
  • Florian Luca
چکیده

We study the question of whether for each n there is an m �= n with λ(m) = λ(n), where λ is Carmichael’s function. We give a “near” proof of the fact that this is the case unconditionally, and a complete conditional proof under the Extended Riemann Hypothesis. –To Professor Carl Pomerance on his 65th birthday

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INTEGERS 11 A ( 2011 ) Proceedings of Integers Conference 2009 RECURSIVELY SELF - CONJUGATE PARTITIONS

A class of partitions that exhibit substantial symmetry, called recursively selfconjugate partitions, are defined and analyzed. They are found to have connections to non-squashing partitions and other combinatorial objects.

متن کامل

19 INTEGERS 11 A ( 2011 ) Proceedings of Integers Conference 2009 REMARKS ON THE PÓLYA – VINOGRADOV INEQUALITY

We establish a numerically explicit version of the Pólya–Vinogradov inequality for the sum of values of a Dirichlet character on an interval. While the technique of proof is essentially that of Landau from 1918, the result we obtain has better constants than in other numerically explicit versions that have been found more recently. – Dedicated to Mel Nathanson on his 65th birthday

متن کامل

INTEGERS 11 A ( 2011 ) Proceedings of Integers Conference 2009 HEIGHTS OF DIVISORS OF X n − 1

The height of a polynomial with integer coefficients is the largest coefficient in absolute value. Many papers have been written on the subject of bounding heights of cyclotomic polynomials. One result, due to H. Maier, gives a best possible upper bound of nψ(n) for almost all n, where ψ(n) is any function that approaches infinity as n → ∞. We will discuss the related problem of bounding the ma...

متن کامل

Proceedings of Integers Conference 2009 SUM - PRODUCT INEQUALITIES WITH PERTURBATION

Let A be a set of n > n0(ε) positive real numbers, all at least 1 apart. We show that, if δa,b and δ� a,b are arbitrary real numbers satisfying |δa,b| < n 1−ε a , and |δ � a,b| < n1−ε b , we have |{(a + δa,b)(b + δ� a,b) : a, b ∈ A}| + |A + A| � n1+ε/9 log n . – Dedicated to Mel Nathanson and Carl Pomerance on the occasion of their 65th birthdays

متن کامل

14 INTEGERS 9 Supplement ( 2009 ) MAIER MATRICES BEYOND

This paper is an expanded version of a talk given at the 2007 Integers Conference, giving an overview of the Maier matrix method and surveying the author’s work in extending it beyond the integers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011